Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{Na}_{2.54} \mathrm{Cs}_{1.14} \mathrm{Mo}_{9} \mathrm{~S}_{11}$, a quaternary reduced molybdenum sulfide containing $\mathrm{Mo}_{\boldsymbol{9}}$ clusters

D. Salloum, P. Gougeon* and M. Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail:
patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{o}-\mathrm{S})=0.001 \AA$
Disorder in solvent or counterion
R factor $=0.029$
$w R$ factor $=0.067$
Data-to-parameter ratio $=42.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]Sodium caesium nonamolybdenum undecasulfide, $\mathrm{Na}_{2.54^{-}}$ $\mathrm{Cs}_{1.14} \mathrm{Mo}_{9} \mathrm{~S}_{11}$, is isostructural with $\mathrm{Ag}_{1.91} \mathrm{Cs}_{1.16} \mathrm{Mo}_{9} \mathrm{~S}_{11}$. Its crystal structure consists of $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ cluster units with crystallographic $\overline{6}\left(C_{3 h}\right)$ symmetry and interconnected through interunit Mo-S bonds. The Mo-S framework delimits channels in which the Cs^{+}cations are disordered. The Na^{+} cations are located on the mirror planes around the threefold axis between two consecutive $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ units.

Comment

In a recent paper, we reported the crystal structure of the sulfide compound $\mathrm{Ag}_{1.91} \mathrm{Cs}_{1.16} \mathrm{Mo}_{9} \mathrm{~S}_{11}$ (Salloum et al., 2005), which is isostructural with three selenide compounds $\mathrm{Ag}_{2.6^{-}}$ $\mathrm{CsMo}_{9} \mathrm{Se}_{11}, \mathrm{Ag}_{4.1} \mathrm{ClMo}_{9} \mathrm{Se}_{11}$ and $\eta-\mathrm{Mo}_{9} \mathrm{Se}_{11}$ (Gougeon et al., 2004). All these structures crystallize in a new structure type containing bioctahedral Mo_{9} clusters. By replacing silver cations with sodium cations, we were able to synthesize the isostructural new quaternary sulfide compound $\mathrm{Na}_{2.54} \mathrm{Cs}_{1.14^{-}}$ $\mathrm{Mo}_{9} \mathrm{~S}_{11},(\mathrm{I})$, that is presented here.

Compound (I) contains $\mathrm{Mo}_{9} \mathrm{~S}_{11}^{\mathrm{i}} \mathrm{S}^{a}{ }_{6}$ cluster units based on the bioctahedral Mo_{9} cluster (Fig. 1). The i-type ligands cap

Figure 1
View of $\mathrm{Na}_{2.54} \mathrm{Cs}_{1.14} \mathrm{Mo}_{9} \mathrm{~S}_{11}$, with displacement ellipsoids drawn at the 50% probability level.

Received 20 January 2006
Accepted 24 January 2006

Figure 2
Plot showing the atom-numbering scheme of the $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ cluster units.

Mo triangular faces and the a-type ligands are in apical positions for the external Mo1 atoms (Fig. 2); for details of the i and a-type ligand notation, see Schäfer \& von Schnering (1964). The centre of the $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ cluster unit is located at the Wyckoff $2 d$ position and thus exhibits $C_{3 h}$ or $\overline{6}$ symmetry. The intracluster Mo-Mo distances are 2.6186 (4) and 2.6925 (6) \AA within the Mo_{3} triangles formed by the Mo atoms related through the threefold axis, and 2.6712 (3) and 2.6951 (3) Å, respectively, for those between the latter Mo_{3} triangles. All these Mo-Mo distances are shorter than in the silver analogue, as expected from the increase of the cationic charge from +3.07 in the silver compound to +3.68 in (I). The S atoms bridge either one (S1 and S3) or two (S2) Mo triangular faces of the clusters. Moreover, the S 1 atoms are linked to a Mo atom of a neighboring cluster. The Mo-S bond distances range from $2.4153(11)$ to $2.6286(8) \AA$ compared with 2.4172 (7) to 2.5788 (4) \AA in the silver compound. The longest distance corresponds to the interunit $\mathrm{Mo} 1-\mathrm{S} 1$ bonds which ensure the interconnection between the $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ unit, and thus the three-dimensionality of the $\mathrm{Mo}-\mathrm{S}$ framework. The connectivity formula of the latter might be represented as $\mathrm{Mo}_{9} \mathrm{~S}_{5}^{\mathrm{i}} \mathrm{S}^{\mathrm{i}-\mathrm{a}}{ }_{6 / 2} \mathrm{~S}^{\mathrm{a}-\mathrm{i}}{ }_{6 / 2}$. As a result of this arrangement, the shortest intercluster Mo1-Mo1 bond is 3.5781 (5) \AA, which is greater than the value of 3.4025 (3) \AA observed for $\mathrm{Ag}_{1.91} \mathrm{Cs}_{1.16^{-}}$ $\mathrm{Mo}_{9} \mathrm{~S}_{11}$.

The Cs^{+}cations in the $4 e$ positions occupy distorted tricapped trigonal prismatic cavities built of S atoms, and those in the $2 b$ positions are in a trigonal antiprismatic environment. The Cs-S distances spread over a wide range, from 3.406 (12) to 4.01 (3) \AA. The Na^{+}ions are located on mirror planes around the threefold axis between two consecutive $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ units. They are surrounded by five S atoms, forming a distorted square-based pyramid with $\mathrm{Na}-\mathrm{S}$ distances in the range 2.666 (3)-2.8450 (19) Å.

Experimental

Single crystals of (I) were prepared from a mixture of $\mathrm{Cs}_{2} \mathrm{MoS}_{4}$, $\mathrm{MoS}_{2}, \mathrm{Na}_{2} \mathrm{~S}$ and Mo with the nominal composition $\mathrm{Na}_{2} \mathrm{CsMo}_{9} \mathrm{~S}_{11}$. All handling of materials was done in an argon-filled glove-box. The initial mixture (ca 5 g) was cold-pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 1773 K , held for 48 h , then cooled at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K and finally cooled to room temperature by switching off the furnace.

Crystal data

$\mathrm{Na}_{2.54} \mathrm{Cs}_{1.14} \mathrm{Mo}_{9} \mathrm{~S}_{11}$
$M_{r}=1425.92$
Hexagonal, $\mathrm{P6}_{3} / \mathrm{m}$
$a=9.8888$ (2) А
$c=11.6398$ (3) \AA
$V=985.74(4) \AA^{3}$
$Z=2$
$D_{x}=4.804 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 17022 \quad reflections
> $\theta=2.0-39.1^{\circ}$
> $\mu=8.80 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Truncated octahedron, black
> $0.11 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.562, T_{\text {max }}=0.678$
20415 measured reflections
2112 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0145 P)^{2}\right. \\
& +6.9989 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.84 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-2.10 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00082 \text { (11) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mo} 1-\mathrm{S} 3$	$2.4153(11)$	$\mathrm{Mo} 2-\mathrm{S} 1^{\mathrm{iii}}$	$2.5136(8)$
$\mathrm{Mo} 1-\mathrm{S} 1$	$2.4978(8)$	$\mathrm{Mo} 2-\mathrm{S} 1$	$2.5136(8)$
$\mathrm{Mo} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.5046(8)$	$\mathrm{Mo} 2-\mathrm{Mo}^{\mathrm{iv}}$	$2.6925(6)$
$\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{i}}$	$2.5696(6)$	$\mathrm{Na}-\mathrm{S}^{\mathrm{v}}$	$2.666(3)$
$\mathrm{Mo} 1-\mathrm{Mo}^{\mathrm{i}}$	$2.6186(4)$	$\mathrm{Na}-\mathrm{S} 3^{\mathrm{vi}}$	$2.724(2)$
$\mathrm{Mo} 1-\mathrm{S} 1^{\mathrm{ii}}$	$2.6286(8)$	$\mathrm{Na}-\mathrm{S} 1^{\mathrm{vii}}$	$2.8450(19)$
$\mathrm{Mo} 1-\mathrm{Mo} 2^{\mathrm{i}}$	$2.6712(3)$	$\mathrm{Cs} 1-\mathrm{S} 1^{\mathrm{ii}}$	$3.4590(8)$
$\mathrm{Mo} 1-\mathrm{Mo} 2$	$2.6951(3)$	$\mathrm{Cs} 2-\mathrm{S} 1^{\text {viii }}$	$3.406(12)$
$\mathrm{Mo} 2-\mathrm{S} 2^{\mathrm{i}}$	$2.4551(12)$	$\mathrm{Cs} 2-\mathrm{S} 1^{\mathrm{ii}}$	$3.94(4)$
$\mathrm{Mo} 2-\mathrm{S} 2$	$2.4652(12)$	$\mathrm{Cs} 2-\mathrm{S} 2^{\mathrm{ix}}$	$4.01(3)$

Symmetry codes: (i) $-x+y+1,-x+1, z$; (ii) $x-y, x,-z$; (iii) $x, y,-z-\frac{1}{2}$; (iv) $-y+1, x-y, z$; (v) $-x+1,-y,-z$; (vi) $x, y,-z+\frac{1}{2}$; (vii) $x-y, x, z+\frac{1}{2}$; (viii) $-x+y,-x, z ;($ ix $)-y, x-y-1, z$.

In the first stage of the refinement, the atomic positions of the Mo and S atoms were taken as identical to those in $\mathrm{Ag}_{1.91} \mathrm{Cs}_{1.16} \mathrm{Mo}_{9} \mathrm{~S}_{11}$ (Salloum et al., 2005). A subsequent difference Fourier synthesis revealed the Na atoms and a quasi-continuous electron density along the c axis due to the Cs atoms. As in $\mathrm{Ag}_{1.91} \mathrm{Cs}_{1.16} \mathrm{Mo}_{9} \mathrm{~S}_{11}$, the latter was modelled with two partly occupied Cs sites ($4 e$ and $2 b$ positions instead of $4 e$ and $2 a$ in the silver analogue) using second-order tensors for the anisotropic displacement parameters. Anharmonic treatment of atoms Cs1 and Cs2 using the program JANA2000 (Petříček \& Dušek, 2000) was unsuccessful. The final occupation factors for the Na and Cs atoms were refined freely to values of 0.845 (11), 0.57 (3) and 0.284 (18) for $\mathrm{Na}, \mathrm{Cs} 1$ and Cs2, respectively.

inorganic papers

The highest peak and the deepest hole in the final Fourier map are located 1.74 A from Cs 2 and 0.47 A from Cs1, respectively.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: coordinates taken from an isostructural compound; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Intensity data were collected on the diffactometer system of the Centre de Diffractométrie de l'Université de Rennes I (URL: http://www.cdifx.univ-rennes1.fr).

References

Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Gougeon, P., Potel, M. \& Gautier, R. (2004). Inorg. Chem. 43, 12571263.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Petříček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Charles University, Prague, Czech Republic.
Salloum, D., Gougeon, P. \& Potel, M. (2005). Acta Cryst. E61, i213i215.
Schäfer, H. \& von Schnering, H. G. (1964). Angew. Chem. 76, 833-845. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

