Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. Salloum, P. Gougeon* and M. Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (o–S) = 0.001 Å Disorder in solvent or counterion R factor = 0.029 wR factor = 0.067 Data-to-parameter ratio = 42.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 20 January 2006

Accepted 24 January 2006

Na_{2.54}Cs_{1.14}Mo₉S₁₁, a quaternary reduced molybdenum sulfide containing Mo₉ clusters

Sodium caesium nonamolybdenum undecasulfide, Na_{2.54}-Cs_{1.14}Mo₉S₁₁, is isostructural with Ag_{1.91}Cs_{1.16}Mo₉S₁₁. Its crystal structure consists of Mo₉S₁₁S₆ cluster units with crystallographic $\overline{6}$ (C_{3h}) symmetry and interconnected through interunit Mo-S bonds. The Mo-S framework delimits channels in which the Cs⁺ cations are disordered. The Na⁺ cations are located on the mirror planes around the threefold axis between two consecutive Mo₉S₁₁S₆ units.

Comment

In a recent paper, we reported the crystal structure of the sulfide compound $Ag_{1.91}Cs_{1.16}Mo_9S_{11}$ (Salloum *et al.*, 2005), which is isostructural with three selenide compounds $Ag_{2.6}$ -CsMo_9Se_{11}, Ag_{4.1}ClMo_9Se_{11} and η -Mo_9Se_{11} (Gougeon *et al.*, 2004). All these structures crystallize in a new structure type containing bioctahedral Mo₉ clusters. By replacing silver cations with sodium cations, we were able to synthesize the isostructural new quaternary sulfide compound Na_{2.54}Cs_{1.14}-Mo₉S₁₁, (I), that is presented here.

Compound (I) contains $Mo_9S_{11}^iS_6^a$ cluster units based on the bioctahedral Mo_9 cluster (Fig. 1). The *i*-type ligands cap

© 2006 International Union of Crystallography All rights reserved

allography Vie

View of $Na_{2.54}Cs_{1.14}Mo_9S_{11}$, with displacement ellipsoids drawn at the 50% probability level.

Mo triangular faces and the *a*-type ligands are in apical positions for the external Mo1 atoms (Fig. 2); for details of the *i*and a-type ligand notation, see Schäfer & von Schnering (1964). The centre of the Mo_9S_{11} cluster unit is located at the Wyckoff 2*d* position and thus exhibits C_{3h} or $\overline{6}$ symmetry. The intracluster Mo-Mo distances are 2.6186 (4) and 2.6925 (6) Å within the Mo₃ triangles formed by the Mo atoms related through the threefold axis, and 2.6712 (3) and 2.6951 (3) Å, respectively, for those between the latter Mo₃ triangles. All these Mo-Mo distances are shorter than in the silver analogue, as expected from the increase of the cationic charge from +3.07 in the silver compound to +3.68 in (I). The S atoms bridge either one (S1 and S3) or two (S2) Mo triangular faces of the clusters. Moreover, the S1 atoms are linked to a Mo atom of a neighboring cluster. The Mo-S bond distances range from 2.4153 (11) to 2.6286 (8) Å compared with 2.4172 (7) to 2.5788 (4) Å in the silver compound. The longest distance corresponds to the interunit Mo1-S1 bonds which ensure the interconnection between the Mo₉S₁₁ unit, and thus the three-dimensionality of the Mo-S framework. The connectivity formula of the latter might be represented as $Mo_9S_5^{i}S_{6/2}^{i-a}S_{6/2}^{a-i}$ As a result of this arrangement, the shortest intercluster Mo1-Mo1 bond is 3.5781 (5) Å, which is greater than the value of 3.4025 (3) Å observed for $Ag_{1.91}Cs_{1.16}$ -Mo₉S₁₁.

The Cs⁺ cations in the 4e positions occupy distorted tricapped trigonal prismatic cavities built of S atoms, and those in the 2b positions are in a trigonal antiprismatic environment. The Cs-S distances spread over a wide range, from 3.406 (12) to 4.01 (3) Å. The Na⁺ ions are located on mirror planes around the threefold axis between two consecutive Mo₉S₁₁ units. They are surrounded by five S atoms, forming a distorted square-based pyramid with Na-S distances in the range 2.666 (3)-2.8450 (19) Å.

Experimental

Single crystals of (I) were prepared from a mixture of Cs₂MoS₄, MoS₂, Na₂S and Mo with the nominal composition Na₂CsMo₉S₁₁. All handling of materials was done in an argon-filled glove-box. The initial mixture (ca 5 g) was cold-pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at a rate of 300 K h⁻¹ to 1773 K, held for 48 h, then cooled at a rate of 100 K h^{-1} to 1373 K and finally cooled to room temperature by switching off the furnace.

Crystal data

Na _{2.54} Cs _{1.14} Mo ₉ S ₁₁	Mo $K\alpha$ radiation
$M_r = 1425.92$	Cell parameters from 17022
Hexagonal, $P6_3/m$	reflections
a = 9.8888 (2) Å	$\theta = 2.0-39.1^{\circ}$
c = 11.6398 (3) Å	$\mu = 8.80 \text{ mm}^{-1}$
V = 985.74 (4) Å ³	T = 293 (2) K
Z = 2	Truncated octahedron, black
$D_x = 4.804 \text{ Mg m}^{-3}$	$0.11 \times 0.09 \times 0.08 \; \mathrm{mm}$

1618 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.039$ $\theta_{\rm max} = 40.0^{\circ}$

 $h = -14 \rightarrow 17$

 $k = -16 \rightarrow 17$

 $l = -21 \rightarrow 20$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{\min} = 0.562, \ T_{\max} = 0.678$ 20415 measured reflections

2112 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0145P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	+ 6.9989P]
$wR(F^2) = 0.067$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
2112 reflections	$\Delta \rho_{\rm max} = 2.84 \ {\rm e} \ {\rm \AA}^{-3}$
50 parameters	$\Delta \rho_{\rm min} = -2.10 \text{ e } \text{\AA}^{-3}$
	Extinction correction: SHELXL97
	Extinction coefficient: 0.00082 (11)

Table 1 Selected bond lengths (Å).

Mo1-S3	2.4153 (11)	Mo2-S1 ⁱⁱⁱ	2.5136 (8)
Mo1-S1	2.4978 (8)	Mo2-S1	2.5136 (8)
Mo1-S1 ⁱ	2.5046 (8)	Mo2-Mo2 ^{iv}	2.6925 (6)
Mo1-S2 ⁱ	2.5696 (6)	Na-S2 ^v	2.666 (3)
Mo1-Mo1 ⁱ	2.6186 (4)	Na-S3 ^{vi}	2.724 (2)
Mo1-S1 ⁱⁱ	2.6286 (8)	Na-S1 ^{vii}	2.8450 (19)
Mo1-Mo2 ⁱ	2.6712 (3)	Cs1-S1 ⁱⁱ	3.4590 (8)
Mo1-Mo2	2.6951 (3)	Cs2-S1 ^{viii}	3.406 (12)
Mo2-S2 ⁱ	2.4551 (12)	Cs2-S1 ⁱⁱ	3.94 (4)
Mo2-S2	2.4652 (12)	Cs2-S2 ^{ix}	4.01 (3)

Symmetry codes: (i) -x + y + 1, -x + 1, z; (ii) x - y, x, -z; (iii) x, y, $-z - \frac{1}{2}$; (iv) -y + 1, x - y, z; (v) -x + 1, -y, -z; (vi) $x, y, -z + \frac{1}{2};$ (vii) $x - y, x, z + \frac{1}{2};$ (viii) -x + y, -x, z; (ix) -y, x - y - 1, z.

In the first stage of the refinement, the atomic positions of the Mo and S atoms were taken as identical to those in Ag_{1.91}Cs_{1.16}Mo₉S₁₁ (Salloum et al., 2005). A subsequent difference Fourier synthesis revealed the Na atoms and a quasi-continuous electron density along the c axis due to the Cs atoms. As in Ag_{1.91}Cs_{1.16}Mo₉S₁₁, the latter was modelled with two partly occupied Cs sites (4e and 2b positions instead of 4e and 2a in the silver analogue) using second-order tensors for the anisotropic displacement parameters. Anharmonic treatment of atoms Cs1 and Cs2 using the program JANA2000 (Petříček & Dušek, 2000) was unsuccessful. The final occupation factors for the Na and Cs atoms were refined freely to values of 0.845 (11), 0.57 (3) and 0.284 (18) for Na, Cs1 and Cs2, respectively. The highest peak and the deepest hole in the final Fourier map are located 1.74Å from Cs2 and 0.47Å from Cs1, respectively.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *COLLECT*; data reduction: *EVALCCD* (Duisenberg, 1998); program(s) used to solve structure: coordinates taken from an isostructural compound; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL97*.

Intensity data were collected on the diffactometer system of the Centre de Diffractométrie de l'Université de Rennes I (URL: http://www.cdifx.univ-rennes1.fr).

References

- Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
- Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The
- Netherlands. Gougeon, P., Potel, M. & Gautier, R. (2004). Inorg. Chem. 43, 1257– 1263.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. **19**, 1014–1018.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Petříček, V. & Dušek, M. (2000). JANA2000. Institute of Physics, Charles
- University, Prague, Czech Republic.
- Salloum, D., Gougeon, P. & Potel, M. (2005). Acta Cryst. E61, i213i215.
- Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.